
Integrated Demonstration of Instrument Placement, Robust Execution
and Contingent Planning

L. Pedersen1, M. Bualat2, D. Lees1, D.E. Smith2, R. Washington3

NASA Ames Research Center, Moffett Field, CA 94035-1000
1QSS Group, Inc at NASA ARC, 2NASA ARC, 3RIACS at NASA ARC

{pedersen, lees, de2smith, richw}@email.arc.nasa.gov, Maria.G.Bualat@nasa.gov

Keywords rovers, instrument deployment, rover
operations, K9, contingent planning, robust

execution, Viz, data visualization

Abstract
This paper describes an integrated demonstration

of ground-based contingent planning, robust
execution and autonomous instrument placement for
the efficient exploration of a site by a prototype Mars
rover.

1.1. Introduction
Approaching science targets, such as rocks, and

placing instruments against them to take
measurements is the raison d’être of a planetary
surface exploration rover, such as the planned 2009
Mars Science Laboratory (MSL) rover. This is
necessary to acquire samples, determine mineralogy,
obtain microscopic images and perform other
operations needed to understand the planet’s geology
and search for evidence of past or present life.
Significant science cannot be done with remote
measurements only.

Figure 1 K9 Rover autonomously places a
microscopic camera to examine a rock target in
the NASA Ames Marscape.

In order to accomplish the task of instrument
placement within a single cycle with the robustness
required for a mission, the on-board software must
be able to handle failures and uncertainties

encountered during the component tasks. A task
may fail, requiring recovery or retrying. Tasks may
exhibit a high degree of variability in their resource
usage, using more (or less) time and energy than
expected. Finally, the state of the world and the
rover itself may be predictable only to a limited
extent. Exploring multiple rock targets further
exacerbates this situation. These factors require that
the rover’s software have the ability to reason about a
wide range of possible situations and behaviors. A
simple script is insufficient; instead, the rover can
use either on-board task planning or off-board
planning in conjunction with robust on-board
execution.

In November and December of 2002,
researchers at NASA Ames Research Center (ARC)
successfully demonstrated an end-to-end single cycle
instrument deployment scenario from ground
operations and planning to execution and science
data capture. This demonstration occurred in the
newly constructed Marscape rover test site.

The demonstration mission scenario begins with
the NASA Ames K9 rover at the site to be explored
(a simulated lakebed in the Marscape). K9 acquires
a panoramic set of stereo images of the site. These
are downloaded and processed off-board to create a
virtual terrain model of the environment, rendered in
the Ames Viz 3D virtual reality interface. The
mission controllers explore the virtual world and
choose rock targets of interest. For each rock they
decide where the rover needs to be to examine it,
what measurements are desired at that location, and
how much these measurements are worth. In
addition, they specify the allowed paths between the
various locations, including the start position and any
additional decision points. This information is
automatically saved to a file for use by the mission
planner.

Our goal is for the rover to obtain, in a single
command cycle, the set of measurements that
maximize the expected utility subject to constraints
on time, power consumption and where it can go.
We accomplish this using an off-board mixed
initiative contingent planner along with robust on-
board execution. This is consistent with current
mission practice, which requires intensive sequence
verification before uplink. In addition, the perceived
additional risk of an on-board planner could delay
acceptance by mission managers.

The planner generates a sequence, with
contingencies, that is uploaded to the rover, where it
is executed by the conditional executive. The rover
navigates, via decision points, to rock targets where
it stops and autonomously places an arm mounted
microscopic camera against the target and acquires a
measurement.

The remainder of this paper describes the
various components of this demonstration: the K9
rover, the Marscape test facility, the science interface
(Viz), the contingent planner, the conditional
executive, and the instrument placement system.

1.2. Robotic Testbed and Outdoor Test Facility

1.3. K9 Rover
The K9 Rover is a 6-wheel steer, 6-wheel drive

rocker-bogey chassis outfitted with electronics and
instruments appropriate for supporting research
relevant to remote science exploration. The main
CPU is a 750 MHz PC104+ Pentium III running the
Linux operating system. An auxiliary
microprocessor communicates with the main CPU
over a serial port and controls power switching and
other I/O processing. The motion/navigation system
consists of motor controllers for the wheels and
pan/tilt unit, a compass, and an inertial measurement
unit.

The K9 rover software architecture uses the
Coupled Layered Architecture for Robotic
Autonomy (CLARAty)[9] developed at JPL, in
collaboration with ARC and Carnegie Mellon
University. By developing our instrument placement
technology under the CLARAty architecture, we can
easily port the system to other CLARAty robots.

1.3.1. K9 Cameras

Figure 2 K9 camera systems. Mast-mounted
navigational and science cameras (left) and front
hazard avoidance cameras (right).

K9 is equipped with three camera pairs: a front-
mounted forward looking pair of b/w stereo hazard
cameras and mast mounted stereo pairs of high
resolution color science cameras and wide field of
view b/w navigation cameras (Figure 2). The
navigation and science stereo pairs are mounted on a
common pan-tilt unit such that they can acquire
image panoramas from around the rover.

The hazard cameras overlook the arm
workspace. Being fixed, and close to the target area,
they are the easiest to calibrate with respect to the

arm, and are used to build 3D models of the
workspace prior to placing an instrument.

1.3.2. Instrument Arm

Figure 3 K9 5 DOF arm deployed.

K9’s instrument arm (Figure 3) is a 5-DOF
robotic manipulator based on a 4 DOF FIDO
MicroArm IIA design from JPL[11]. It is
approximately 5.0 kg with a total extended length of
0.79 meters. The waist yaw, shoulder pitch, elbow
pitch, forearm twist (designed at Ames), and wrist
pitch joints of the arm allow arbitrary x-y-z
instrument placement as well as pitch and yaw
control within the arm workspace. These rotational
aluminum joints are connected by graphite epoxy
tube links. The links are configured in a side-by-side
orientation, with the two links running directly next
to each other.

The payload mass for K9’s arm is estimated to
be about 1.5 kg (3.3 lbs) with a strong-arm lifting
capacity of about 2.5 kg (5.5 lbs) when fully
extended in the horizontal position. Each joint in the
arm has an embedded MicroMo 1319 series motor
with an integrated planetary gear head and magnetic
encoder. (Additional harmonic drive gearing was
needed past the actuator to meet the significant
torque requirements.) The no-load output speed
varies from joint to joint, but averages about 0.1
radians per second. External to each joint is a multi-
turn potentiometer that is coupled to the rotor and is
used for initial arm calibration. The calibration
procedure and magnetic encoders result in a
positional accuracy of +/- 2 mm.

1.3.3. CHAMP Microscopic Camera
Affixed at the end of K9’s arm is the CHAMP

(Camera Hand-lens MicroscoPe) microscopic camera
[8] (Figure 4). It has a movable CCD image plane,
allowing it to obtain focused images over a wide
depth of field, from a few millimeters up to several
meters.

 Because rotation about CHAMP's long axis
does not need to be controlled, placing CHAMP flat
against a rock requires control of five degrees of
freedom. K9's arm has a full 5 degrees of freedom,
removing the need to coordinate simultaneous arm

and rover base motion. The rover's base only needs
to move to within arm's reach of the rock, and can
remain stationary during arm movement.

CHAMP has three spring-loaded mechanical
distance sensors around its face that report contact
with the rock. CHAMP can acquire a Z-stack of
images from a target, each focused at a slightly
different depth. These can be combined into a
composite focused image (Figure 14).

Figure 4 CHAMP camera deployed onto rock.

1.4. Marscape

Figure 5 Marscape view toward dry lakebed and
impact crater (top); Marscape elevation map
showing streambed, delta, lakebed, volcano and
chaotic terrain (bottom).

The integrated demonstration took place in the
Marscape (Figure 5), a 3/4-acre rover test site built at
Ames. Marscape is unique in that it features a richly
varied topography with many occluded areas and
consistent with those aspects of the Martian
environment and geology of greatest scientific
interest. Marscape’s design includes a dry streambed
with exposed sedimentary layers. The streambed
drains into a dry lakebed with evaporite deposits.
Overlapping the lakebed is an old meteorite impact

crater, partially broken in a manner consistent with
past water erosion. A volcanic zone (left in elevation
map view) intruding onto the lakebed gives rise to an
area of past hydrothermal activity, including hot
springs, known to be excellent sites for the
preservation of evidence for life. In the top part of
the image we see a basalt magmatic cap has intruded
over the sedimentary environment, giving rise to a
chaotic terrain.

A trailer provides power, wireless network
coverage, and shelter for engineers monitoring
operations.

1.5. Ground Operations

1.6. Scene Visualization and Activity
Specification

Stereo imagery from K9 is downloaded to the
Ground Operations station and processed by the
“Ames stereo-pipeline” to generate accurate high-
resolution 3D terrain models of the remote site using
binocular disparity information. The terrain model is
viewed and manipulated in a virtual reality system
called “Viz” [10]. Viz is an interactive simulation
environment equipped with a number of science
analysis and operations tools. These include
lighting, pose and viewpoint simulation (Figure 6).
A suite of measurement tools is also provided that
allows intuitive interrogation of the remote site, and
Viz is integrated with a kinematic simulation engine,
called “VirtualRobot” (Figure 6), that provides rover
pose and viewpoint simulation capabilities for
operations planning.

Figure 6 The Viz 3-D interface (left) and Virtual
Robot control panel (right).

Using these tools, scientists specify a series of
science targets and the paths and waypoints that
connect them (Figure 7). For each target, the
objectives are specified, along with the utility of each
objective. This information is used to create an
“operations file” which is post-processed to create an
input file for the contingent planner (Section 3.2).
The planner takes the list of desired science targets
and utilities and creates a plan that maximizes
science return subject to resource and safety
constraints. We expect to do more work in the future

to “close the loop” between the planner and Viz (e.g.
to visualize the results from the planner directly in
the 3-D scene) so that scientists can get feedback
about which targets will be visited and which will
not and can adjust their plans accordingly.

Figure 7 A set of science targets and waypoints.

1.7. Contingent Planning

X0

X2 utility = 10

X1: Decision point

X3 utility = 100

Figure 8 Waypoint and utility planning for
instrument placement.

Once a set of science objectives has been chosen
using Viz, these objectives, and their values are
passed to a contingent planning system. This
planning system determines which of the objectives
to pursue along with the detailed commands
necessary to achieve those objectives. In addition, it
also inserts “contingency branches” into the plan to
cover situations where the plan might possibly fail.
In the example shown in Figure 8, suppose the
planner initially constructs a plan to go to waypoint
X1, and then location X3. It could then add a
contingency branch to go to X2 instead, if, upon
arrival at X1, there is not enough power or time
available to continue to X3.

1. Generate seed plan
2. Identify best branch point
3. Generate contingency branch
4. Evaluate & integrate branch

?? ? ?

Figure 9 The Just-In-Case planning approach.

resources

goals
s

Europa Planner

Contingency Planner

plan
prefix plan

Constraint Engine

Monte-Carlo
Simulation

plan

evaluation

Figure 10 Architecture of the contingency
planner.

This contingency planning is done using an
incremental Just-In-Case approach [5], as illustrated
in Figure 9. First a “seed” plan is generated having
maximum expected utility. That is, the plan achieves
the best objectives possible given the expected
resources available (time and energy), and expected
consumption of those resources by the actions
involved. This plan is then evaluated to determine
where it might fail, given uncertainty in resource
consumption by the various actions involved. A
branch point is then chosen, either by a user, or by
using simple heuristics. An alternative, or
contingency, plan is then constructed for this branch,
and incorporated into the primary plan. The
resulting conditional plan is again evaluated, and
additional branches can be added as needed.

The architecture of the contingency planner is
shown in Figure 10. The contingency planner makes
use of the Europa planning engine [7][6] to generate
seed plans, and to generate the plans for the
contingency branches. For constructing a seed plan,
the contingency planner gives Europa the goals,
expected resource availability, and expected resource
consumption of actions. When the plan comes back,
the contingency planner evaluates it using Monte
Carlo simulation to determine the impact of
uncertainty in resource usage. The plan is then
displayed in a JAVA GUI (Figure 11) for the user to
examine. The user can select places where the
planner should try to build a contingency branch. To
build the branch, the planner passes appropriate
goals, the prefix of the plan (prior to the branch
point), and resource availability to Europa. In this

case, the expected resource availability is defined by
the branch condition, because that bounds the
resources that will be available if the branch is taken.

Figure 11 Planner GUI, displaying a set of
branching timelines for different attributes like
rover location and arm state.

The problem of automatically choosing good
branch points and good branch conditions is quite
hard in general (see [1], [4] for details). Intuitively,
it might seem that a good place to put a contingency
branch is at the place where the plan is most likely to
fail. Unfortunately, this is often near the end of the
plan, when resources (time and energy) are nearly
exhausted. With few resources remaining, there may
not be any useful alternative plans.

Instead, one would like to anticipate failures
earlier in the plan, when useful alternatives remain.
In other words, the planner is looking for the point(s)
in the plan where a contingent branch could be added
that would maximally increase the overall utility of
the plan. In general, this quantity is very difficult to
compute. In [4] we outline a heuristic technique for
estimating both the expected gain of a given branch
point, and the condition for that branch. This
information can be used to do automatic branch point
and condition selection. We have not yet completed
the implementation and testing of this technique, but
expect to incorporate it into the contingency planner
in the near future.

1.8. Rover Operations
Once generated, the sequence with contingent

branches is uplinked to K9.

1.9. Robust Execution
The CRL Executive is responsible for

interpretation of the contingent plan coming from the
ground and generated by the contingent planner. The
CRL Executive is designed to be more capable than
traditional sequence execution engines; it can handle
the expressive plans generated by the contingent
planner and can perform limited plan adaptation
itself.

The planner translates its plan into the
Contingent Rover Language (CRL) for uplink, and

the CRL Executive interprets the CRL-encoded plan
directly. CRL is a flexible, conditional sequence
language that allows for execution uncertainty [2].
CRL expresses temporal constraints and state
constraints on the plan, but allows flexibility in the
precise time that actions must be executed.
Constraints include conditions that must hold before,
during, and after actions are executed. A recent
addition to CRL is the ability to specify concurrent
threads of activity.

A primary feature of CRL is its support for
contingent branches to handle potential problem
points or opportunities in execution. The contingent
branches and the flexible plan conditions allow a
single plan to encode a large family of possible
behaviors, thus providing responses to a wide range
of situations.

The structure of the CRL plan language and its
interpretation are completely domain-independent.
Domain-dependent information is added by
specifying a command dictionary, with command
names and argument types, and a command interface,
which passes commands to the rover and return
values and state information from the rover.

The CRL Executive is responsible for
interpreting the CRL command plan coming from
ground control, checking run-time resource
requirements and availability, monitoring plan
execution, and potentially selecting alternative plan
branches if the situation changes. At each branch
point in the plan, there may be multiple eligible
options; the option with the highest expected utility
is chosen. For this demonstration, the contingent
planner generated mutually exclusive branches.

A novel feature of the CRL Executive is its
support for “floating contingencies,” which are plan
fragments that may be inserted at any point in
execution [3]. For example, a plan to perform
opportunistic science during a traverse is naturally
expressed as a floating contingency, since the
presence and position of an interesting science target
is unknown before the traverse. Likewise, a plan to
stop and recharge the battery is another example of a
floating contingency. In general, floating
contingencies would be impractical for the planner to
consider because of the large number of possible
branch points that they would add to a plan.

The CRL Executive is implemented as a multi-
threaded, event-based system (see Figure 12).
Around a central Executive event-processing loop
are threads to handle timing, event monitoring,
action execution monitoring, and telemetry
gathering. The central event processor sends
requests to the other threads (for example, "wake up
at time 20" or "notify when battery state of charge is
below 4Ah") and receives events relevant to those
requests. This architecture allows the CRL
Executive to support concurrent activities and
flexible action conditions expressible within the CRL
language.

Database
(system
state)

Telemetry

Timer

Action
Execution

Condition
CheckerExecutive

main loop
Plan

Watcher

Rover real-time system

incoming
plans

alternate
plan

library

Event
Queue

Planner

Figure 12 CRL Executive structure. The main
event loop communicates with other threads for
services such as timing, action monitoring, and
event monitoring. External connections are to a
planner, which supplies new plans to execute, and
a rover real-time system, which executes actions
and supplies telemetry data.

1.10. Target Approach and Instrument
Placement

The uploaded CRL sequence commands K9 to
move to rock targets, via waypoints. K9 stops at a
target and assesses the rock scene in front of it to
autonomously place CHAMP and acquire
microscopic images. Figure 13 shows this sequence
of activities in greater detail.

Currently, the rover uses deduced reckoning to
maneuver to a location in front of the target. We do
not yet use visual tracking, or other means, to
maintain a fix on the rock target, or even a location
on the rock, as the rover moves. Given our
combined error budget of 30cm and navigation error
of 5%, we can only work with targets within 3m
distance of the rover.

Once the rover has moved up to the target, it
must determine where to place the instrument, what
pose is needed, and check that the target surface will
permit the instrument to be placed there.

If Mission Control specified a particular final
pose for the instrument, relative to a target that has
been accurately tracked, then this task is
unnecessary. Scientists at Mission Control might
wish to specify an entire rock as a target, not just a
given point. Not only is such over-specification
unnecessary; it may over-constrain the problem, and
might not even be feasible prior to the rover
approaching close enough to the rock to see it in

sufficient detail. Or it might simply not be possible
to track a single point with enough precision. In these
cases, scientists are compelled to request a
measurement anywhere on a rock (or large area on
it).

The first step in determining where to place an
instrument on a rock target (or other large area) is to
obtain a 3D scan of the work area. This can be done
with the stereo hazard cameras, which have the best
view of the work area and are the easiest to calibrate
with respect to the arm.

3D scan of
target

Target in
workspace?

Rover maneuvers
to target

Assess target

Manipulator motion
planning and execution

Instrument
Placement

Y

N

Figure 13 Instrument placement execution flow.

The rock (or target area) in the 3D model of the
work area is segmented from the background using
an iterative 3D clustering algorithm[11]. This
algorithm is very robust to noise, requiring only that
the ground be relatively flat (but at an arbitrary
orientation) and that the work area have at most one
rock significantly larger than any clutter in the scene.

All points on the target rock are checked for
consistency with the rover instrument (CHAMP) to
ensure that it does not get damaged during
placement. The simplest check for each point is to
find all points within a given radius, compute the
best-fit plane, and check that maximum deviations do
not exceed some preset tolerance.

Finally, the instrument can be placed. First, via
a series of pre-planned waypoints the arm is un-
stowed and put in a holding position. Next it goes to
a pose near the highest priority target pose in the
workspace, holding back a safe distance along the
target surface normal. To compensate for possible
small errors in surface location, the instrument's final
approach is along the measured normal to the target

rock face, moving slowly forward until contact is
confirmed by mechanical sensors.

Once the arm places the camera, we obtain
microscopic images of the rock surface (Figure 14).

Figure 14 Composite microscopic image of target
rock.

1.11. Summary
It has been speculated that the use of nuclear

power to extend the 2009 Mars rover mission to
1000 days decreases the need for autonomy, as there
would be sufficient time to accomplish
measurements in the traditional, time consuming
way, without having to risk autonomy. This is
fallacious for several reasons. Over time the risk of a
rover failure increases, hence it is important to get
the baseline measurements as quickly as possible.
The cost of operating a mission in the traditional
manner, with a large co-located science and
operations team for 1000 days is very high. In fact,
it may not even be possible to obtain sufficient
qualified personnel prepared to take time out from
their careers to operate a rover for 3 years.
Autonomy can alleviate this bottleneck by increasing
the rate of science return and decreasing the
operations overhead.

Ultimately, to fully explore an area to
understand its geology and search for evidence of
past or present life may require examining many
hundreds, if not thousands, of rocks. Without
automation, a few score rocks at most can be
examined in a single mission.

Acknowledgements
The authors of this paper would like to

acknowledge the contributions of the following
people: Randy Sargent, Anne Wright, Susan Lee,
Larry Edwards, Clay Kunz, Sailesh Ramakrishnan,
Betty Lu, Nicolas Meuleau, Howard Cannon, Hoang
Vu, John Bresina, Nathalie Cabrol, and the
researchers of the Computational Sciences Division
at NASA Ames Research Center, including the
Autonomy and Robotics Area managers James
Crawford and Nicola Muscettola whose support was
pivotal in this endeavor. We would also like to thank

the Intelligent Systems and the Mars Technology
programs for their support.

References
[1] Bresina, J., R. Dearden, N. Meuleau, S.

Ramakrishnan, and R. Washington, “Planning
under continuous time and resource uncertainty:
a challenge for AI” in Proc. 19th Conference on
Uncertainty in AI, 2002.

[2] Bresina, J., K. Golden, D. E. Smith, and R.
Washington. “Increased flexibility and
robustness of Mars rovers,” in Proc. 5th Intl.
Symposium on Artificial Intelligence, Robotics
and Automation in Space, 1999.

[3] Bresina, J., and R. Washington. “Robustness via
run-time adaptation of contingent plans,” in
Proceedings of the AAAI-2001 Spring
Symposium: Robust Autonomy, 2001.

[4] Dearden, R., N. Meuleau, S. Ramakrishnan, D.
E. Smith, and R. Washington, “Contingency
Planning for Planetary Rovers,” in Proc 3rd
NASA International Workshop on Planning and
Scheduling for Space, 2002.

[5] Drummond, M., J. Bresina, and K. Swanson,
“Just-In-Case Scheduling,” in Proc. 12th
National Conf. on Artificial Intelligence, 1994.

[6] Frank, J. and A. Jónsson, “Constraint-based
attribute and interval planning,” to appear in
Constraints, 2003.

[7] Jónsson, A., P. Morris, N. Muscettola, K. Rajan,
B. Smith, “Planning in interplanetary space:
theory and practice,” in Proc. 5th Int. Conf. on
AI Planning and Scheduling, 2000, pp. 177–186.

[8] Lawrence, G.M., J.E. Boynton, et al, “CHAMP:
Camera HAndlens MicroscoPe,” in The 2nd
MIDP Conference, Mars Instrument
Development Program. JPL Technical
Publication D-19508, 2000.

[9] Nesnas, I., R. Volpe, T. Estlin, H. Das, R. Petras,
D. Mutz, “Toward Developing Reusable
Software Components for Robotic
Applications,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems
(IROS), 2001.

[10] Nguyen, L., M. Bualat, L. Edwards, L.
Flueckiger, C. Neveu, K. Schwehr, M.D.
Wagner, and E. Zbinden, “Virtual reality
interfaces for visualization and control of remote
vehicles,” in Autonomous Robots 11(1), 2001.

[11] Pedersen, L., “Science Target Assessment for
Mars Rover Instrument Deployment,” in
IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS),
Lausanne, Switzerland, September 30 – October
4, 2002.

